Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight?
نویسندگان
چکیده
A function annotation method using the sequence-to-structure-to-function paradigm is applied to the identification of all disulfide oxidoreductases in the Saccharomyces cerevisiae genome. The method identifies 27 sequences as potential disulfide oxidoreductases. All previously known thioredoxins, glutaredoxins, and disulfide isomerases are correctly identified. Three of the 27 predictions are probable false-positives. Three novel predictions, which subsequently have been experimentally validated, are presented. Two additional novel predictions suggest a disulfide oxidoreductase regulatory mechanism for two subunits (OST3 and OST6) of the yeast oligosaccharyltransferase complex. Based on homology, this prediction can be extended to a potential tumor suppressor gene, N33, in humans, whose biochemical function was not previously known. Attempts to obtain a folded, active N33 construct to test the prediction were unsuccessful. The results show that structure prediction coupled with biochemically relevant structural motifs is a powerful method for the function annotation of genome sequences and can provide more detailed, robust predictions than function prediction methods that rely on sequence comparison alone.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملComparison of the Lipophosphoglycan 3 Gene of the Lizard and Mammalian Leishmania: A Homology Modeling
Background: Lipophosphoglycan 3 (LPG3) is required for the LPG assembly, a well known virulent molecule. In this study, the LPG3 gene of the lizard and mammalian Leishmania species were cloned and sequenced. A three-dimensional structure (3D) for the target sequence was also predicted by comparative (homology) modeling. Materials and Methods: An optimization PCR amplification was performed o...
متن کاملPrediction of 3D protein Structure based on Mutation of AKAP3 and PLOD3 Gene in Case of Non-Obstructive Azoospermia
Background: The present study has been designed with the aim of evaluating A-kinase anchoring proteins 3 (AKAP3)and Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) gene mutations and prediction of 3D proteinstructure for ligand binding activity in the cases of non-obstructive azoospermic male.Materials and Methods: Clinically diagnosed cases of non-obstructive azoos...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملPhylogenetic Analysis of Beta-Glucanase Producing Actinomycetes Strain TBG-CH22 - A Comparison of Conventional and Molecular Morphometric Approach
Actinomycetes are inexhaustible producers of commercially valuable metabolites, are continually screened for beneficial compounds. The taxonomic and phylogenetic study of novel actinomycetes strains are mostly based on conventional methods and primary DNA structure of 16s rRNA. Although 16s rRNA sequence is well accepted in phylogeny studies, its secondary structures have not been widely used. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2001